Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available June 15, 2026
-
Free, publicly-accessible full text available June 3, 2026
-
Free, publicly-accessible full text available June 3, 2026
-
Many scientific applications opt for particles instead of meshes as their basic primitives to model complex systems composed of billions of discrete entities. Such applications span a diverse array of scientific domains, including molecular dynamics, cosmology, computational fluid dynamics, and geology. The scale of the particles in those scientific applications increases substantially thanks to the ever-increasing computational power in high-performance computing (HPC) platforms. However, the actual gains from such increases are often undercut by obstacles in data management systems related to data storage, transfer, and processing. Lossy compression has been widely recognized as a promising solution to enhance scientific data management systems regarding such challenges, although most existing compression solutions are tailored for Cartesian grids and thus have sub-optimal results on discrete particle data. In this paper, we introduce LCP, an innovative lossy compressor designed for particle datasets, offering superior compression quality and higher speed than existing compression solutions. Specifically, our contribution is threefold. (1) We propose LCP-S, an error-bound aware block-wise spatial compressor to efficiently reduce particle data size while satisfying the pre-defined error criteria. This approach is universally applicable to particle data across various domains, eliminating the need for reliance on specific application domain characteristics. (2) We develop LCP, a hybrid compression solution for multi-frame particle data, featuring dynamic method selection and parameter optimization. It aims to maximize compression effectiveness while preserving data quality as much as possible by utilizing both spatial and temporal domains. (3) We evaluate our solution alongside eight state-of-the-art alternatives on eight real-world particle datasets from seven distinct domains. The results demonstrate that our solution achieves up to 104% improvement in compression ratios and up to 593% increase in speed compared to the second-best option, under the same error criteria.more » « lessFree, publicly-accessible full text available February 10, 2026
-
Free, publicly-accessible full text available February 25, 2026
-
Error-bounded lossy compression has been effective in significantly reducing the data storage/transfer burden while preserving the reconstructed data fidelity very well. Many error-bounded lossy compressors have been developed for a wide range of parallel and distributed use cases for years. They are designed with distinct compression models and principles, such that each of them features particular pros and cons. In this paper we provide a comprehensive survey of emerging error-bounded lossy compression techniques. The key contribution is fourfold. (1) We summarize a novel taxonomy of lossy compression into 6 classic models. (2) We provide a comprehensive survey of 10 commonly used compression components/modules. (3) We summarized pros and cons of 47 state-of-the-art lossy compressors and present how state-of-the-art compressors are designed based on different compression techniques. (4) We discuss how customized compressors are designed for specific scientific applications and use-cases. We believe this survey is useful to multiple communities including scientific applications, high-performance computing, lossy compression, and big data.more » « lessFree, publicly-accessible full text available May 2, 2026
-
Free, publicly-accessible full text available November 17, 2025
-
Free, publicly-accessible full text available November 17, 2025
-
Lossy compression has been employed to reduce the unprecedented amount of data produced by today's large-scale scientific simulations and high-resolution instruments. To avoid loss of critical information, state-of-the-art scientific lossy compressors provide error controls on relatively simple metrics such as absolute error bound. However, preserving these metrics does not translate to the preservation of topological features, such as critical points in vector fields. To address this problem, we investigate how to effectively preserve the sign of determinant in error-controlled lossy compression, as it is an important quantity of interest used for the robust detection of many topological features. Our contribution is three-fold. (1) We develop a generic theory to derive the allowable perturbation for one row of a matrix while preserving its sign of the determinant. As a practical use-case, we apply this theory to preserve critical points in vector fields because critical point detection can be reduced to the result of the point-in-simplex test that purely relies on the sign of determinants. (2) We optimize this algorithm with a speculative compression scheme to allow for high compression ratios and efficiently parallelize it in distributed environments. (3) We perform solid experiments with real-world datasets, demonstrating that our method achieves up to 440% improvements in compression ratios over state-of-the-art lossy compressors when all critical points need to be preserved. Using the parallelization strategies, our method delivers up to 1.25X and 4.38X performance speedup in data writing and reading compared with the vanilla approach without compression.more » « less
An official website of the United States government
